Followers Are Not Enough: A Question-Oriented Approach to Community Detection in Online Social Networks

نویسندگان

  • David Darmon
  • Elisa Omodei
  • Joshua Garland
چکیده

Community detection in online social networks is typically based on the analysis of the explicit connections between users, such as “friends” on Facebook and “followers” on Twitter. But online users often have hundreds or even thousands of such connections, and many of these connections do not correspond to real friendships or more generally to accounts that users interact with. We claim that community detection in online social networks should be question-oriented and rely on additional information beyond the simple structure of the network. The concept of ‘community’ is very general, and different questions such as “whom do we interact with?” and “with whom do we share similar interests?” can lead to the discovery of different social groups. In this paper we focus on three types of communities beyond structural communities: activity-based, topic-based, and interaction-based. We analyze a Twitter dataset using three different weightings of the structural network meant to highlight these three community types, and then infer the communities associated with these weightings. We show that the communities obtained in the three weighted cases are highly different from each other, and from the communities obtained by considering only the unweighted structural network. Our results confirm that asking a precise question is an unavoidable first step in community detection in online social networks, and that different questions can lead to different insights about the network under study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Followers Are Not Enough: A Multifaceted Approach to Community Detection in Online Social Networks

In online social media networks, individuals often have hundreds or even thousands of connections, which link these users not only to friends, associates, and colleagues, but also to news outlets, celebrities, and organizations. In these complex social networks, a 'community' as studied in the social network literature, can have very different meaning depending on the property of the network un...

متن کامل

تشخیص اجتماعات ترکیبی در شبکه‌های اجتماعی

One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014